Energetyka – Politechnika Poznańska rekrutacja 2023/2024 Studia na kierunku energetyka na Politechnice Poznańskiej to studia inżynierskie lub magisterskie, których program kształcenia zazwyczaj trwa od 3,5 do 4,5 roku (studia I stopnia) lub od 1,5 do 2 lat (studia II stopnia) i kończy się uzyskaniem dyplomu (inżyniera lub magistra).
Budowa elektrowni atomowych jest tematem bardzo kontrowersyjnym. Od dłuższego czasu mamy do czynienia z "małą wojną" między naukowcami przedstawiającymi argumenty "za" i ekologami przedstawiającymi argumenty "przeciw". Obydwie strony oczywiście uważają, że ich teoria jest słuszna i nie chcą słyszeć o innej. Na podstawie zdobytych przeze mnie materiałów postaram się przedstawić w miarę obiektywnie argumenty jednej i drugiej strony. Jako, że nie zaliczam się do żadnej z tych grup mam nadzieję, że mi się to uda. Obecnie w 31 krajach działa 437 reaktorów jądrowych. Wytwarzają one ok. 17% energii elektrycznej. Na energetykę jądrową postawiły kraje Dalekiego Wschodu. Dynamicznie rozwija się energetyka jądrowa w Korei Południowej oraz Japonii. Nowe elektrownie pojawiają się również w krajach rozwijających się takich jak Indie, Pakistan czy Iran. Uruchomienie elektrowni jądrowej w Słowacji oraz decyzja rządu czeskiego o kontynuacji budowy elektrowni atomowej świadczą o tym, że także kraje europejskie liczą się z możliwością znacznego wzrostu zapotrzebowania na energię elektryczną. Kolejne reaktory jądrowe budują także:Federacja Rosyjska, Ukraina i Rumunia. W energetykę jądrową angażują się Argentyna i Brazylia. Również we Francji buduje się kolejną elektrownie atomową. Łącznie na świecie buduje się 14 nowych obiektów tego rodzaju. Dziś większość ludzi uważa elektrownie jądrowe za zagrożenie. Naukowcy zastanawiają się, czy i kiedy Polska będzie zmuszona sięgnąć po energię atomową aby zaspokoić potrzeby energetyczne kraju. Szacuje się, że zapotrzebowanie na energię wzrośnie do 2020 roku od 60 do 120 %. Jest to więcej niż są w stanie wyprodukować obecnie działające elektrownie. Prof. Andrzej Hrynkiewicz - jeden z najbardziej zagorzałych zwolenników rozwoju energii atomowej-: "Na całym świecie energia elektryczna jest uważana za najlepszą postać energii końcowej, czyli tej, która powinna dotrzeć do konsumentów. Tymczasem w naszym kraju tylko niewielka część energii dociera do odbiorców pod tą postacią. Aż 27% energii dostarczanej odbiorcom to węgiel. Ale to nie koniec problemu - aż 97% energii elektrycznej w Polsce produkowana jest z węgla kamiennego lub brunatnego. Sytuacja taka budzi niepokój, gdyż energia z węgla jest bardzo szkodliwa dla środowiska" Ze względu na bezpieczeństwo energetyczne kraju należałoby - wg Piotra Kieracińskiego - doprowadzić do większej dywersyfikacji źródeł pozyskiwania energii. I tu wprowadzenie energetyki jądrowej byłoby korzystne. Poza tym, energetyka atomowa jest jedyną czystą postacią energii, nie emitującą żadnych szkodliwych zanieczyszczeń. Zdaniem wielu analityków, przy obecnej strukturze pozyskiwania energii możliwe jest spełnienie zobowiązań ekologicznych do ok. 2010 roku. Dalej może ono okazać się zbyt kosztowne. Wtedy jedną z opcji stanie się wybudowanie elektrowni atomowych. Panują różne opinie, jedni uważają, że będzie to rok 2010, inni przesuwają tą datę jeszcze o 10 lat. Czy energia atomowa warta jest zachodu ... Koszty inwestycyjne są ogromne. Wybudowanie elektrowni atomowej jest o połowę droższe od wybudowania nowoczesnej elektrowni węglowej. ALE ... okazuje się, że najdroższym paliwem energetycznym jest w tej chwili gaz ziemny. Przewiduje się, że będzie on drożał w przyszłości. Najbardziej stabilna sytuacja panuje natomiast na rynku paliwa jądrowego. Ponieważ potrzeba go niewiele, łatwo jest zgromadzić zapasy paliwa na wiele lat . Tymczasem paliwa kopalne są nie tylko kosztowne, ale i ich zapasy szybko się wyczerpują. Trzeba także zwrócić uwagę na to, że transport - który jest bardzo drogi i wciąż stanowi jedno z poważniejszych źródeł emisji zanieczyszczeń atmosfery - w przypadku elektrowni atomowych ogranicza się do cyklu inwestycyjnego a do pracy elektrowni węglowych potrzeba go bardzo dużo. Dochodzą jeszcze ogromne ilości odpadów. Do pracy elektrowni gazowych trzeba miliardów metrów sześciennych gazu ziemnego, przesyłanego ogromnymi kosztownymi rurociągami. W latach 90. Kraje zachodnie zrealizowały dwa programy, na podstawie których ustalono koszty dla wytwarzania energii elektrycznej z węgla, gazu ziemnego oraz rozpadu atomu. . Okazało się, że koszty produkcji energii z gazu są o rząd wielkości (10x) wyższe od kosztów energii uzyskanej w elektrowni atomowej., a koszty energii z węgla - stukrotnie wyższe. Według Tomasza Terleckiego z "Federacji Zielonych" argumentacja zwolenników energetyki jądrowej opiera się na założeniu, że aby uniknąć kryzysu energetycznego należy produkować więcej energii, tym czasem logika ekologiczna zaczyna się od przekonania, że lepiej racjonalnie i oszczędnie używać tego co jest, niż wytwarzać rzeczy nowe. W kraju, który nie cierpi na nadmiar pieniędzy, żeby na coś dać trzeba skądś wziąć. Wydatki na energetykę jądrową zablokują środki na strukturalne zmiany w gospodarce, na wykonanie programu oszczędnościowego, oraz przekreślają nadzieję na ograniczenie emisji zanieczyszczeń konwencjonalnych." Nie licząc innych przyczyn, samo przyjęcie planu rozwoju energetyki jądrowej spowoduje wzrost zadłużenia kraju w roku 2010 do 79 mld dolarów i nie zaspokoi zapotrzebowania na energię. Według źródeł oficjalnych, w przypadku kontynuowania budowy elektrowni jądrowych, zapotrzebowanie na energię wzrośnie do 2010r. przynajmniej o 20% a elektrownie te (jeśli zostaną wybudowane na czas, co można między bajki włożyć)pokryją najwyżej 3-7% ogólnego bilansu energii" - twierdzi Terlecki. Według niego, nie dość, że każda elektrownia atomowa zamiast poprawiać - pogarsza problemy energetyczne kraju, to stwarza zagrożenia dla życia. Awarie w elektrowniach konwencjonalnych mają zasięg lokalny a ich skutki odczuwalne są przez ograniczony czas. Z elektrowniami atomowymi jest niestety inaczej. Radioaktywne pary, które przedostają się do środowiska nawet podczas bezawaryjnej pracy, zawierają pierwiastki promieniotwórcze, krążące w przyrodzie przez tysiące lat i zabijające wielokrotnie. Do tego należy dodać wycieki radioaktywne z innych ogniw łańcuch obiegu paliwa jądrowego, bez którego elektrownia działać nie może. Awarie w elektrowniach atomowych są nieuniknione. Według raportów Międzynarodowej Agencji Energii Atomowej od początku lat 70 - tych zdarzyło się na świecie ok. 400 wypadków tzw. poważnych. Dokładnie ile ich było - nie wiadomo, gdyż nie ma obowiązku informowania MAEA i opinii publicznej o awariach. Informacje na ten temat są ukrywane, aby nie straszyć ludzi i nie hamować rozwoju energetyki atomowej. Chmura radioaktywna ma tę zaletę, że jest niewidoczna. Nikt jednak nie zliczy ilu ludzi i innych żywych istot dotąd zabiły i ilu jeszcze uśmiercą. Energetyka jądrowa niesie ze sobą jeszcze jeden nierozwiązywalny problem - pozbywanie się odpadów. Kto da gwarancję, że jakiekolwiek miejsce na Ziemi oraz jakikolwiek pojemnik wytrzymają w nienaruszonym stanie pół miliona lat? Bo tyle właśnie pluton-239 - najbardziej śmiercionośna substancja stworzona przez człowieka - powinien być odizolowany od środowiska. Aby nie unicestwić ludzkości energetyka jądrowa wymaga absolutnie niezawodnych technologii oraz doskonale perfekcyjnego człowieka - mówi Terlecki. Są to marzenia nierealne i groźne. Normalne jest, że maszyna czasem się psuje a człowieka nieomylnego próżno by szukać. Każda technologia powinna to uwzględnić. Rozwój naszego kraju nie może być oparty na nieodnawialnych paliwach kopalnych. Trzeba się zacząć przestawiać na czerpania energii ze źródeł, które są odnawialne, bądź niewyczerpywalne. Najprostszym, najtańszym i najwydajniejszym sposobem zwiększania podaży energii jest jej oszczędzanie. Każda złotówka przeznaczona na zmniejszenie energochłonności przynosi kilkakrotnie więcej energii niż złotówka włożona w budowę nowej elektrowni. W latach 1973-1978 95% całkowitej dodatkowej podaży energii w Europie pochodziło z jej oszczędniejszego wykorzystania. Tym sposobem miliony zabiegów oszczędzających energię w skali indywidualnej przyczyniły się do uzyskania niemal 20 razy więcej energii, niż w tym czasie dały wszystkie nowe elektrownie europejskie razem wzięte, z elektrowniami jądrowymi włącznie. Energia słoneczna dociera na Ziemię w ilościach prawie nieograniczonych w stosunku do potrzeb człowieka. Dlaczego nie wykorzystać tego? Energetyka geotermalna polegająca na wykorzystaniu ciepła Ziemi jest obiecująca. Według obliczeń krakowskich profesorów Romana Neya i Juliusza Sokołowskiego, tą drogą można pokryć 23% krajowego bilansu energii pierwotnej. Wpływ na środowisko W Polsce podstawowym aktem prawnym, normującym działalność w zakresie wykorzystywania energii jądrowej na potrzeby społeczno-gospodarcze kraju jest ustawa z dnia 10 kwietnia 1986 roku "Prawo atomowe". Elektrownia jądrowa podczas eksploatacji wywiera wpływ na środowisko poprzez: * wydzielenie produktów promieniotwórczych do atmosfery * wydzielenie produktów promieniotwórczych do wód zrzutowych * wydzielenie ciepła odpadowego do wody chłodzącej. Kopalnie uranu i zakłady wzbogacania uranu są źródłem zanieczyszczeń środowiska substancjami radioaktywnymi. Radioaktywne są odpady z tych zakładów - hałdy ich powinny być pokrywane asfaltem lub chlorkiem poliwinylu. Podczas produkcji paliwa jądrowego również powstają odpady radioaktywne - ciekłe i w postaci aerozolu. Pierwszą barierą ochronną przed promieniotwórczymi produktami rozszczepiania są koszulki, w których umieszczane są tzw. pastylki paliwowe. Ich zadaniem jest odprowadzanie ciepła wytworzonego w paliwie do wody chłodzącej i uniemożliwienie przedostania się produktów rozszczepienia na zewnątrz. Wypalone paliwo jądrowe wskutek swej promieniotwórczości jest niebezpieczne dla człowieka. Z tego względu musi być ono trwale usunięte do przestrzeni, gdzie jego promieniowanie jest niegroźne, bądź długo przechowywane w sposób bezpieczny, bądź wreszcie przerobione na produkty bezpieczne dla otoczenia. Pierwszy sposób to gromadzenie wypalonego paliwa w głębokich, wyeksploatowanych kopalniach soli np. w Niemczech lub pod dnem mórz np. Szwecja. Drugi sposób polega na przechowywaniu wypalonego paliwa w zbiornikach wodnych lub w zbiornikach betonowych, chłodzonych powietrzem. Przerób wypalonego paliwa jądrowego ma na celu usunięcie produktów rozszczepienia i odzyskanie niewypalonego uranu i plutonu, pozostałego w paliwie. Wypalone paliwo jest przerabiane w specjalnych zakładach przetwórczych, do których paliwo jest transportowane po jego wstępnym wystudzeniu na terenie elektrowni. Przerób wypalonego paliwa jądrowego w celu uzyskania uranu i plutonu jest procesem radioaktywnym. Głównym źródłem radioaktywności są produkty korozji pojemników, w których przechowuje się wypalone paliwo jądrowe przed jego przerobieniem. Potencjalnym źródłem skażenia środowiska może być transport materiałów promieniotwórczych, takich jak wypalone elementy paliwowe i zestalone odpady wysoko aktywne. Transport koncentratów uranu i wypalonego paliwa jądrowego jest obwarowany szczegółowymi przepisami, mającymi na celu wyeliminowanie niebezpieczeństw ich promieniowania podczas drogi. Wypalone paliwo jądrowe jest dużo bardziej niebezpieczne niż koncentraty uranu - musi być przewożone w pojemnikach stalowych, które zapewniają eliminację promieniowania na zewnątrz pojemników i ich szczelność nawet przy bardzo ciężkich wypadkach drogowych i pożarze. Transport pojemników następuje koleją lub samochodami. Działanie na rzecz ochrony środowiska wokół elektrowni jądrowej mają na celu zapobieżenie przedostaniu się na zewnątrz elektrowni jądrowej izotopów promieniotwórczych zarówno podczas normalnej eksploatacji elektrowni, jak i podczas potencjalnej awarii. Nuklidy (tj. atomy określonego rodzaju scharakteryzowane przez skład jądra ) promieniotwórcze powstają w licznych procesach wewnątrz reaktora jądrowego. Powstają one w wyniku wzajemnego oddziaływania neutronów z materiałami reaktora. Większość powstałych nuklidów promieniotwórczych powstaje wewnątrz paliwa i w materiale reaktora. Większa część tych nuklidów promieniotwórczych ulega rozpadowi promieniotwórczemu albo pozostaje wewnątrz reaktora. Jedynie znikoma ich ilość dostaje się do atmosfery w postaci gazów i do zbiorników wodnych w postaci odpadów ciekłych. Natomiast nuklidy w postaci odpadów stałych są składowane w specjalnie do tego przygotowanych pomieszczeniach. Poszczególne nuklidy promieniotwórcze różnią się okresem półrozpadu, a także ilościami które po wchłonięciu przez oddychanie lub przez przewód pokarmowy mogą być odłożone w różnych narządach ciała oraz szybkością wydalania ich z organizmu. W celu uwzględnienia rodzaju promieniowania i jego skutków biologicznych wprowadzono pojęcie równoważnika dawki. Operowanie równoważnikiem dawki pozwala dodawać dawki napromieniowania wywołane przez różne rodzaje promieniotwórczości, sprowadzać je do wspólnego mianownika pod względem skutków biologicznych. Należy pamiętać, że aktywność odpadów z energetyki jądrowej maleje stukrotnie w ciągu 600 lat, podczas gdy naturalne pierwiastki promieniotwórcze mają czas połowicznego rozpadu rzędu miliardów lat. Można powiedzieć, że w skali tysięcy lat energetyka jądrowa, zużywając uran, a w przyszłości również tor, będzie obniżać, a nie zwiększać zagrożenie ludzkości promieniowaniem jonizującym. Warto w tym miejscu jeszcze raz przypomnieć, że w popiołach usuwanych rocznie na wysypiska z elektrowni węglowej o mocy 1000 MW(e) znajduje się średnio ponad 3 tony uranu oraz około 7 ton toru i substancje te nie są w żaden sposób zabezpieczone. Poza tym człowiek jest poddawany promieniowaniu kosmicznemu i ziemskiemu, a także promieniowaniu materiałów budowlanych w pomieszczeniach zamkniętych i promieniowaniu zawartych w jego ciele pierwiastków promieniotwórczych. Wybór lokalizacji elektrowni jądrowej następuje na podstawie raportu bezpieczeństwa lokalizacji, zawierającego charakterystykę terenu lokalizacji pod względem demograficznym, meteorologicznym, geologiczno-inżynierskim, hydrogeologicznym, komunikacyjnym, hydrotechnicznym , sejsmologicznym itp. oraz dane o napromieniowaniu ludności w otoczeniu elektrowni spowodowane eksploatacyjnym odprowadzaniem materiałów promieniotwórczych z elektrowni. Rodzaje awarii mogących wystąpić w elektrowni jądrowej są rozpatrywane w raporcie bezpieczeństwa. Są one dzielone na trzy kategorie: - awarie przeciętne, prowadzące co najwyżej do wyłączenia reaktora, po usunięciu awarii reaktor wznawia pracę; - awarie rzadkie, nie powodujące jednak utraty szczelności obiegu pierwotnego lub odbudowy bezpieczeństwa i nie stanowiące zagrożenia na obszarze leżącym poza strefą ochronną; - maksymalna awaria projektowa, przy której może wystąpić wydzielenie maksymalnej określonej w raporcie bezpieczeństwa ilości produktów rozszczepienia, ale możliwe być musi wyłączenie i wychłodzenie reaktora. Gospodarka odpadami stałymi Odpady stałe powstające w czasie eksploatacji elektrowni jądrowej, ze względu na stężenie substancji promieniotwórczych dzieli się na: - wysoko aktywne, do których należą części wewnętrzne reaktorów znajdujące się w strefie promieniowania neutronowego, zużyte filtry do oczyszczania gazu i powietrza - średnioaktywne, do których zalicza się części konstrukcyjne obiegu pierwotnego takie jak: rurociągi, armatura, izolacja termiczna, wkłady filtracyjne niektórych układów wentylacyjnych, części pomp, odpady metalowe, wymienialne elementy układu pomiarów i automatyki - niskoaktywne, którymi są części konstrukcyjne i drobne wyposażenie układów pomocniczych obiegu pierwotnego, skażona odzież i obuwie specjalne, drewno, tworzywo sztuczne, odpady budowlane. Odpady stałe wysokoaktywne przechowuje się stale w przechowalnikach w pobliżu basenu wypalonego paliwa. Pozostałe odpady stałe średnio i niskoaktywne przekazuje się do budynku zestalania odpadów. W budynku tym są one przechowywane od 3 do 5 lat w celu obniżenia aktywności. Po tym okresie, dla zmniejszenia ich objętości odpady są cięte lub prasowane i zestalane w asfalcie lub w beczkach lub prostopadłościennych pojemnikach. W ten sposób przygotowane i opakowane odpady okresowo magazynuje się na terenie elektrowni, a następnie wywozi do składowiska odpadów promieniotwórczych. Gospodarka odpadami ciekłymi W wyniku pracy układów oczyszczania ścieków promieniotwórczych powstają następujące odpady ciekłe: * koncentrat powyparny * zużyte wysokoaktywne jonity * zużyte niskoaktywne jonity Odpady te przekazuje się do budynku zestalania odpadów i przechowuje przez okres 3 do 5 lat w celu zmniejszenia ich aktywności, a następnie odparowuje, zestala i miesza z asfaltem. Pozostają one na trenie elektrowni do czasu wywiezienia do składowiska odpadów promieniotwórczych. Kryzys gospodarczy w latach 1989-1992 spowodował spadek zapotrzebowania na energię elektryczną, tak więc budowa nowych źródeł mocy stała się - przejściowo niepotrzebna. To sprawiło, że budowa elektrowni jądrowych w Polsce może być odłożona na okres po roku 2000. Planuje się budowę kilku elektrowni gazowych, które są mniej uciążliwe dla środowiska od cieplnych węglowych. Jak dotąd nie produkujemy energii elektrycznej z ekologicznie czystego źródła jakim jest reakcja rozszczepienia uranu przeprowadzona w sposób kontrolowany w reaktorze jądrowym. Miernikiem naszego zacofania w tej dziedzinie jest fakt iż w 34 krajach świata funkcjonuje kilkaset bloków jądrowych (432 w 1995r.) dając średni udział 17% w całości dostawy energii. Aż w 15 krajach udział energii elektrycznej z elektrowni jądrowych stanowi co najmniej 30%. - Japonia - ponad 50 reaktorów - Szwajcaria nie posiada ani jednej elektrowni na węgiel! - cała energetyka oparta jest na elektrowniach wodnych i jądrowych. Poza tym istnieje 1 elektrownia konwencjonalna na olej. - wszyscy nasi sąsiedzi (prócz Białorusi) posiadają elektrownie jądrowe 1. Argentyna 2. Armenia 3. Belgia 4. Brazylia 5. Bułgaria 6. Chiny 7. Tajwan 8. Czechy 9. Finlandia 10. Francja 11. Holandia 12. Hiszpania 13. Indie 14. Iran 15. Japonia 16. Kanada 17. Kazachstan 18. Korea Pd. 19. Kuba 20. Litwa 21. Meksyk 22. Niemcy 23. Pakistan 24. Rep. Pd. Afryki 25. Rosja 26. Rumunia 27. Słowacja 28. Słowenia 29. Szwecja 30. Szwajcaria 31. Ukraina 32. USA 33. Węgry 34. Wlk. Brytania 35. Włoch. prace autoryzowano lub edytowano: o: 19:10:38
Energetyka jądrowa. Budowa elektrowni atomowych jest tematem bardzo kontrowersyjnym. Od dłuższego czasu mamy do czynienia z "małą wojną" między naukowcami przedstawiającymi argumenty "za" i ekologami przedstawiającymi argumenty "przeciw". Obydwie strony oczywiście uważają, że ich teoria jest słuszna i nie chcą słyszeć o innej.
Znajdź swoje wymarzone studia w Warszawie
Rozszczepienie. Rozszczepienie jądra atomowego to reakcja polegająca na rozpadzie jądra na dwie (rzadziej na więcej) części o zbliżonych masach, któremu towarzyszy emisja neutronów oraz kwantów gamma. Jądra, które ulegają rozszczepieniu, są jądrami ciężkimi posiadającymi dużą liczbę nukleonów. Proces ten zachodzi
Home Książki Nauki przyrodnicze (fizyka, chemia, biologia, itd.) Energia jądrowa wczoraj i dziś Książka ta jest przeznaczona dla wszystkich zainteresowanych energetyką i ekologią. Przedstawiono w niej historię energii jądrowej od początku, to znaczy od badań związanych z rozwojem broni jądrowej, aż do współczesnych prac nad zastosowaniem materiałów jądrowych w przemyśle i w medycynie. Omówiono także podstawowe zagadnienia energetyki jądrowej oraz perspektywy jej rozwoju w Polsce i innych krajach. Poruszono sprawy najbardziej interesujące z punktu widzenia społeczności ludzkiej, związane z ochroną środowiska, takie jak przyczyny i skutki awarii reaktorów, zabezpieczenie odpadów promieniotwórczych i biologiczne skutki promieniowania jonizującego. Porównywarka z zawsze aktualnymi cenami W naszej porównywarce znajdziesz książki, audiobooki i e-booki, ze wszystkich najpopularniejszych księgarni internetowych i stacjonarnych, zawsze w najlepszej cenie. Wszystkie pozycje zawierają aktualne ceny sprzedaży. Nasze księgarnie partnerskie oferują wygodne formy dostawy takie jak: dostawę do paczkomatu, przesyłkę kurierską lub odebranie przesyłki w wybranym punkcie odbioru. Darmowa dostawa jest możliwa po przekroczeniu odpowiedniej kwoty za zamówienie lub dla stałych klientów i beneficjentów usług premium zgodnie z regulaminem wybranej księgarni. Za zamówienie u naszych partnerów zapłacisz w najwygodniejszej dla Ciebie formie: • online • przelewem • kartą płatniczą • Blikiem • podczas odbioru W zależności od wybranej księgarni możliwa jest także wysyłka za granicę. Ceny widoczne na liście uwzględniają rabaty i promocje dotyczące danego tytułu, dzięki czemu zawsze możesz szybko porównać najkorzystniejszą ofertę. papierowe ebook audiobook wszystkie formaty Sortuj: Podobne książki Oceny Średnia ocen 8,8 / 10 16 ocen Twoja ocena 0 / 10 Cytaty Powiązane treści
- Ձևշωካኗм ψиցιζሠնևв գозοгև
- Π п
- Иклω εջነнυ թυснав
- Ивсаглሱч з
- Ущисрուрох ժетուջ ψи
- Хո уቴ фըኛехру
- Инт ማтвιዘωςогθ
Zdaniem Macieja Muskata z Greenpeace Polska można dyskutować z prognozowanym przez rząd tempem wzrostu gospodarczego Polski i związanym z tym popytem na energię. W jego opinii Polska nie potrzebuje energii jądrowej tylko rozwiązań poprawiających efektywność energetyczną, dzięki którym po 2030 r. zapotrzebowanie na energię powinno
Studia na kierunku Energetyka i chemia jądrowa to propozycja kształcenia adresowana do tych, którzy chcą zdobyć rzetelną wiedzę w zakresie matematyki, fizyki i chemii jądrowej, radiochemii i ochrony trakcie trzyletnich studiów licencjackich, studenci mają możliwość zdawania egzaminu państwowego na Inspektora Ochrony Radiologicznej, bez dodatkowych ukończeniu studiów na kierunku Energetyka i chemia jądrowa absolwent będzie przygotowany do pracy w zespołach interdyscyplinarnych, mających na celu wspólne rozwiązywanie problemów zawodowych. Będzie posiadać wiedzę z zakresu nauk o promieniotwórczości, znać podstawowe zasady bezpieczeństwa i higieny pracy oraz ochrony pozna techniki doświadczalne i obserwacyjne, co umożliwi pracę podczas wykorzystywania aparatury naukowej, badawczej oraz aparatury przemysłowej wykorzystującej techniki na tym kierunku dedykowane są osobom o gruntowej wiedzy z zakresu nauk ścisłych, dokładnie z matematyki, chemii i fizyki. Niezbędne cechy to: analityczny umysł, łatwość przyswajania trudnych zagadnień zwłaszcza z fizyki, umiejętność współpracy w grupie oraz cierpliwość i ciągła chęć do poszerzania swojej trakcie trzech lat nauki studenci zmagają się z takimi przedmiotami: rachunek różniczkowy i całkowy chemia nieorganiczna z elementami syntezy nieorganicznej podstawy fizyki współczesnej analiza programowanie mechanika i szczególna teoria względności chemia organiczna z elementami biochemii metody numeryczne elektrodynamika dla neuroinformatyków chemia fizyczna mechanika kwantowa chemia kwantowa z elementami spektroskopii molekularnej analiza instrumentalna podstawy fizyki subatomowej dozymetria i ochrona radiologiczna wstęp do chemii pierwiastków wewnątrzprzejściowych elementy termodynamiki i mechaniki statystycznej fizyka jądrowa chemia jądrowa i radiacyjna technologia chemiczna krystalografia z elementami teorii na Energetykę i chemię jądrową rekrutowani są na podstawie wyników uzyskanych na maturze z przedmiotów wskazanych przez uczelnię. Do obowiązkowych przedmiotów zaliczają się: język polski matematyka język obcy nowożytny oraz jeden wybrany spośród: chemia informatyka fizyka fizyka i astronomia. Zawsze należy sprawdzić szczegółowe wymogi kwalifikacyjne w serwisach rekrutacyjnych kierunku Energetyka i chemia jądrowa może znaleźć zatrudnienie we wszelkich przedsiębiorstwach stosujących techniki jądrowe, w tym: w elektrowniach jądrowych w innych organach administracji centralnej i terenowej związanych z energetyką jądrową, zarządzaniem odpadami, ochroną i chemia jądrowa jest kierunkiem unikatowym na skalę naszego wyniku nierozwiniętego w Polsce sposobu pozyskiwania energii z elektrowni atomowych praca dla specjalistów z tej dziedziny może być znikoma. Większe możliwości istnieją dla osób zajmujących się radiochemią i ochroną radiologiczną. Nie zmienia to jednak faktu, że najprawdopodobniej absolwenci pragnący pracować w obszarze energetyki jądrowej będą musili szukać pracy za granicą.
Bezpieczna energetyka jądrowa. Bezpieczeństwo to kluczowe zagadnienie w energetyce, nie tylko jądrowej. Możemy je rozpatrywać przynajmniej na dwóch osobnych płaszczyznach – bezpieczeństwa dostaw energii oraz bezpieczeństwa eksploatacji samych elektrowni. Energetyka jądrowa jest technologią, która dobrze prezentuje się w obu tych
Spis treści Szczegóły Kod S2-ECHJ Jednostka organizacyjna Wydział Chemii Kierunek studiów Energetyka i chemia jądrowa Forma studiów Stacjonarne Poziom kształcenia Drugiego stopnia Profil studiów ogólnoakademicki Języki wykładowe polski Minimalna liczba studentów 3 Limit miejsc 6 Czas trwania 2 lata Adres WWW Wymagany dokument Wykształcenie wyższe Limit miejsc: 6, w tym: 5 miejsc dla kandydatów kwalifikowanych na podstawie wyników z dotychczasowych studiów oraz 1 miejsce dla kandydatów kwalifikowanych na podstawie egzaminu. Studia prowadzone są w języku polskim. Dziedzina: nauki ścisłe i przyrodnicze, dyscyplina: nauki chemiczne Liczba semestrów: 4 Liczba punktów ECTS konieczna do ukończenia studiów na danym poziomie: 120 Tytuł zawodowy nadawany absolwentom: magister Zajęcia odbywają się na Kampusie Ochota, na Wydziale Chemii UW, przy ulicy Pasteura 1 oraz na Wydziale Fizyki, przy ulicy Pasteura 5. Szczegółowy program studiów dostępny jest tutaj. Do podjęcia studiów II stopnia na kierunku Energetyka i Chemia Jądrowa nie jest wymagane ukończenie studiów I stopnia na tym kierunku, konieczny jest jedynie licencjat z chemii, fizyki lub nauk pokrewnych, zdobyty na dowolnej uczelni. Na studiach II stopnia dostępne są dwie ścieżki kształcenia: Fizyka u podstaw Energetyki Jądrowej Ścieżka ta obejmuje głównie zagadnienia fizyki reaktorowej, jak neutronika i zagadnienia cieplno-przepływowe oraz zaawansowanej fizyki jądrowej. W toku studiów odbędą się ćwiczenia laboratoryjne przy reaktorze jądrowym oraz pracę z symulatorami reaktora i oprogramowaniem do symulacji procesów zachodzących w reaktorze. Chemia Jądrowa Ścieżka chemiczna obejmuje zagadnienia z obszaru energetyki jądrowej, chemii analitycznej izotopów promieniotwórczych, zaawansowanej fizyki jądrowej, wykorzystania źródeł promieniotwórczych w nauce, przemyśle i medycynie jak również problemy bezpieczeństwa jądrowego, w tym kwestie bezpiecznej pracy ze źródłami promieniowania jonizującego oraz sposoby postępowania w sytuacji kryzysowej związanej z wypadkami radiacyjnymi. Wyboru specjalności dokonuje się po pierwszym semestrze. Na obu ścieżkach student ma dużą swobodę wyboru przedmiotów. Absolwent studiów II stopnia kierunku Energetyka i Chemia Jądrowa: posiada interdyscyplinarną wiedzę z zakresu fizyki, chemii i medycyny jądrowej; jest merytorycznie przygotowany do rozwiązywania problemów technicznych i naukowych z wykorzystaniem izotopów promieniotwórczych, zarówno w skali laboratoryjnej jak i przemysłowej, w tym także badań środowiskowych; posiada umiejętność rozumienia działania urządzeń jądrowych: reaktorów jądrowych, akceleratorów; posiada praktyczną umiejętność detekcji promieniowania jonizującego, obsługi urządzeń dozymetrycznych, umiejętność oceny zagrożenia promieniowaniem jonizującym oraz znajomość sposobów ograniczania narażenia; umie pozyskiwać i opracowywać dane empiryczne, potrafi je wizualizować i interpretować, posiada umiejętność korzystania z literatury naukowej i technicznej, baz danych jądrowych; potrafi skutecznie komunikować się ze specjalistami oraz niespecjalistami w zakresie fizyki, chemii, nauk i technik jądrowych oraz dziedzin pokrewnych, nawiązując dyskusję naukową lub przyczyniając się do popularyzacji wiedzy. jest przygotowany do pracy w laboratoriach chemicznych oraz radiochemicznych. Uzyskana wiedza pozwoli absolwentowi na podjęcie pracy w instytucjach związanych z wykorzystaniem energetyki jądrowej, chemii jądrowej, radioanalityką, medycyną jądrową oraz na kontynuowanie nauki, w tym podjęcia studiów 3 stopnia. Zasady kwalifikacji dla kandydatów z dyplomem polskim O przyjęcie na studia drugiego stopnia mogą ubiegać się osoby posiadające tytuł licencjata, magistra, inżyniera lub równoważny. Kandydat jest kwalifikowany na podstawie wyników osiągniętych w czasie dotychczasowych studiów lub na podstawie egzaminu pisemnego z fizyki i chemii. Kandydat może wybrać tylko jeden sposób kwalifikacji. Kwalifikacja na podstawie wyników osiągniętych w czasie dotychczasowych studiów: W przypadku postępowania kwalifikacyjnego na podstawie wyników osiągniętych w czasie dotychczasowych studiów każda ocena S uzyskana przez kandydata na studiach zostanie przeliczona na punkty zgodnie ze wzorem Ocena znormalizowana = (S-Smin)/(Smax- Smin), gdzie Smax jest najwyższą możliwą do zdobycia oceną, a Smin jest najniższą możliwą do zdobycia oceną. Wynik rekrutacyjny każdego kandydata będzie obliczany jako suma ocen znormalizowanych (po przeliczeniu) z przedmiotów uzyskanych na studiach, przy czym każda ocena znormalizowana będzie mnożona przez liczbę godzin danego przedmiotu oraz przez współczynnik zależny od rodzaju przedmiotu. Współczynnik zależny od rodzaju przedmiotu wynosi odpowiednio: dla wykładów, ćwiczeń rachunkowych i laboratoriów z zakresu chemii: 2,0 dla wykładów, ćwiczeń rachunkowych i laboratoriów z zakresu fizyki: 2,0 dla wykładów i ćwiczeń rachunkowych z matematyki: 2,0 dla przedmiotów z zakresu programowania i metod numerycznych: 2,0 dla wykładów, ćwiczeń rachunkowych i laboratoriów z zakresu astronomii: 1,5 dla wykładów, ćwiczeń rachunkowych i laboratoriów z zakresu biologii: 1,0 dla pozostałych: 0,0 W przypadku postępowania kwalifikacyjnego na podstawie wyników osiągniętych w czasie dotychczasowych studiów warunkiem przyjęcia na studia jest uzyskanie końcowej liczby punktów rekrutacyjnych nie mniejszej niż 500 oraz zapewniającej miejsce na liście rankingowej mieszczące się w ramach obowiązującego limitu. Kandydat przystępujący do kwalifikacji na podstawie wyników osiągniętych w czasie dotychczasowych studiów jest zobowiązany dostarczyć jako załączniki w systemie IRK: potwierdzony przez jednostkę, w której kandydat studiował, wypis ocen ze studiów z informacją o wymiarze godzinowym zajęć, oświadczenie podpisane przez kandydata, zawierające: wypis ocen ze studiów z informacją o wymiarze godzinowym zajęć, przy czym należy uwzględnić tylko przedmioty mające współczynnik większy od zera, wynik samodzielnie przeprowadzonych obliczeń punktów rekrutacyjnych wg powyższych reguł. Kwalifikacja na podstawie egzaminu pisemnego z fizyki i chemii: W przypadku postępowania kwalifikacyjnego na podstawie egzaminu pisemnego z fizyki i chemii, warunkiem przyjęcia na studia jest uzyskanie liczby punktów rekrutacyjnych nie mniejszej niż 50 oraz zapewniającej miejsce na liście rankingowej mieszczące się w ramach obowiązującego limitu. Maksymalna możliwa do zdobycia liczba punktów rekrutacyjnych wynosi 100. Egzamin pisemny obejmuje zakres materiału z fizyki i chemii na poziomie studiów pierwszego stopnia. Wymagania do egzaminu dostępne są tutaj. Zasady kwalifikacji dla kandydatów z dyplomem zagranicznym Kandydatów z dyplomem zagranicznym obowiązują takie same zasady, jak kandydatów z dyplomem uzyskanym w Polsce. Kandydaci mogą zostać zobowiązani do przystąpienia dodatkowo do rozmowy sprawdzającej znajomość języka polskiego w stopniu umożliwiającym studiowanie. W celu oceny stopnia znajomości języka polskiego kandydaci proszeni są o załączenie skanów niezbędnych dokumentów na koncie rejestracyjnym oraz o kontakt z komisją rekrutacyjną danego kierunku niezwłocznie po dokonaniu rejestracji. Potwierdzenie przez komisję rekrutacyjną wystarczającej znajomości języka polskiego jest warunkiem dopuszczenia kandydata do dalszego postępowania rekrutacyjnego. Wymagania dotyczące znajomości języka polskiego. >> Otwórz stronę! << Terminy Termin egzaminu: 17 września 2019 r. Ogłoszenie wyników: 20 września 2019 r. Przyjmowanie dokumentów: I termin: 23 i g: II termin: 25 i g: III termin: 27 i g: Opłaty Opłata rekrutacyjna (w tym opłaty wnoszone za granicą) Opłata za wydanie legitymacji studenckiej (ELS) Wymagane dokumenty Lista dokumentów wymaganych do złożenia w formie papierowej w przypadku zakwalifikowania na studia Dodatkowe informacje Znajdź nas na mapie: Wydział Chemii
. 207 301 676 571 124 447 111 552
energetyka i chemia jądrowa opinie